UNIVERSITE CLAUDE BERNARD

U.F.R. de Mathématiques Licence de Sciences et Technolgie Groupe IV Mention M.A.S.S. L1-S1-U.E.11 : Mathématiques

CHAPITRE IV

RELATIONS – APPLICATIONS

4.0. Avant-propos

Nous n'avons pas défini précisément la notion d'ensemble, nous contentant d'une notion intuitive : une collection d'objets partageant une propriété commune. Mais à l'intérieur de cet ensemble, on peut trouver des liens qui lient certains éléments entre eux. On peut alors analyser ces relations et en tirer des conclusions : ces liaisons entre les éléments possèdent certaines propriétés qui vont permettre de structurer notre ensemble (voir aussi le chapitre VI : "Les structures algébriques"), de lui conférer une plus grande richesse et permettre ainsi de pouvoir déduire de nouvelles propriétés, de démontrer de nouveaux théorèmes.

4.1. Relation binaire

Une relation binaire en mathématiques peut être comparée à un groupe verbal en grammaire. Ainsi « être le père de » est une relation binaire dans l'ensemble des êtres humains, « être le voisin de » est une relation binaire dans l'ensemble des habitants du quartier. On sent tout de suite qu'il y a des différences de nature (que l'on va préciser très vite) entre ces deux exemples de relation.

Définitions 4.1 : On appelle relation binaire entre éléments de deux ensembles A et B, une propriété \mathcal{R} définie sur $A \times B$ caractérisant les éléments d'un sous ensemble G de $A \times B$ appelé graphe de la relation \mathcal{R} :

$$\forall (x,y) \in A \times B, \ \mathcal{R}(x,y) \iff (x,y) \in G$$

ou
$$G = \{(x, y) \in A \times B \mid \mathcal{R}(x, y)\}.$$

On note très souvent $x\mathcal{R}y$ au lieu de $\mathcal{R}(x,y)$ et on dit : « x est en relation avec y par \mathcal{R} ». Bien entendu et c'est un cas fréquent, A et B peuvent être égaux ; c'est le cas de nos deux exemples plus haut, mais on peut aussi chercher les garçons qui sont voisins avec des filles.

Réciproquement, dès que l'on se donne un sous-ensemble de $A \times B$, on définit une relation binaire en disant que deux éléments sont en relation s'ils appartiennent à ce sous-ensemble.

Exemples : Le plan étant muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$, soit D la droite d'équation x + y + 2 = 0. C'est un sous-ensemble de \mathbb{R}^2 défini par

$$\{(x,y) \in \mathbb{R}^2 \mid x+y+2=0\}.$$

Ce sous-ensemble est le graphe de la relation binaire entre réels définie par

$$x\mathcal{R}y \iff x+y+2=0$$
.

Géométriquement, cette droite définit également une relation binaire entre les points du plan, en différenciant ceux qui appartiennent à la droite (c'est le graphe), de ceux qui n'y appartiennent pas.

Sur les nombres entiers naturels, on peut définir les relations binaires : $x < y, x = y, x \ge y$, etc... ou encore : $x\mathcal{R}y$ ssi « x et y ont le même reste dans la division euclidienne par 3 » ; ainsi on a $5\mathcal{R}$ 17 mais on n'a pas $4\mathcal{R}$ 21.

4.2. Propriétés des relations binaires

Soit E, une ensemble et une relation binaire \mathcal{R} définie sur $E \times E$.

Définition 4.2 : Réflexivité. La relation binaire \mathcal{R} est réflexive si, pour tout $x \in E$, $x\mathcal{R}x$.

Exemples:

- Dans l'ensemble des habitants du quartier, la relation binaire « être le voisin de » est réflexive puisque chacun est voisin de lui-même puisqu'il a le même logement!
- Mais, dans l'ensemble des êtres humains, la relation binaire « être le père de » n'est pas réflexive puisqu'on ne peut pas être le père de soi-même!
- Dans l'ensemble des droites du plan, la relation binaire « être parallèle » est réflexive puisque, d'après la définition (exemple 3.1), une droite confondue avec elle-même est parallèle à elle-même.
- Dans l'ensemble $I\!N$ des entiers naturels, la relation binaire « x et y ont le même reste dans la division euclidienne par 3 » est réflexive puisque n a le même reste que lui-même dans la division par 3.

Définition 4.3 : Symétrie. La relation binaire \mathcal{R} est symétrique si, pour tout $x \in E$, $y \in E$, $x\mathcal{R}y$ entraı̂ne $y\mathcal{R}x$.

Exemples:

- Dans l'ensemble des habitants du quartier, la relation binaire « être le voisin de » est évidemment symétrique.
- Mais, dans l'ensemble des êtres humains, la relation binaire « être le père de » n'est pas symétrique : si Pierre est le père de Paul, Paul ne peut être le père de Pierre!
- Dans l'ensemble des droites du plan, la relation binaire « être parallèle » est symétrique. En effet si on suppose que D_1 est parallèle à D_2 , encore d'après la définition, si les deux droites sont confondues on a bien sûr D_2 parallèle à D_1 , sinon $D_1 \cap D_2 = \emptyset$ ou $D_2 \cap D_1 = \emptyset$ et D_2 est parallèle à D_1 .
- Dans l'ensemble $I\!\!N$ des entiers naturels, la relation binaire « x et y ont le même reste dans la division euclidienne par 3 » est symétrique car si $n\mathcal{R}m$, on a : n=3k+r et m=3l+r avec $k,l\in I\!\!N$ et $r\in\{0,1,2\}$. Donc m et n ont également le même reste r.

Définition 4.4 : Transitivité. La relation binaire \mathcal{R} est transitive si, pour tout $x \in E$, $y \in E$, $z \in E$, $x\mathcal{R}y$ et $y\mathcal{R}z$ entraînent que $x\mathcal{R}z$.

Exemples:

- Dans l'ensemble des habitants du quartier, la relation binaire ≪ être le voisin de » est transitive si on considère que le voisin d'un voisin est aussi un voisin.
- Mais, dans l'ensemble des êtres humains, la relation binaire « être le père de » n'est pas transitive : si Pierre est le père de Paul et Paul le père de Jacques, Pierre n'est pas le père mais le grand-père de Jacques!
- Dans l'ensemble des droites du plan, la relation binaire « être parallèle » est transitive. C'est un théorème que nous avons démontré au § 3.1, exemple 3.1.
- Dans l'ensemble $I\!\!N$ des entiers naturels, la relation binaire « x et y ont le même reste dans la division euclidienne par 3 » est transitive car si $n\mathcal{R}m$ et si $m\mathcal{R}p$, on a : n=3k+r, m=3l+r, p=3j+r avec $k,l,j\in I\!\!N$ et $r\in\{0,1,2\}$.

Définition 4.5 : Antisymétrie. La relation binaire \mathcal{R} est antisymétrique si, pour tout $x \in E, y \in E, x\mathcal{R}y$ et $y\mathcal{R}x$ entraînent x = y.

Exemples:

- Dans l'ensemble IR des nombres réels, la relation binaire « $x \le y$ est antisymétrique car si $x \le y$ et $y \le x$, alors x = y.
- Dans l'ensemble des ensembles d'un univers \mathcal{U} , la relation « être inclus dans » est antisymétrique car si $A \subseteq B$ et $B \subseteq A$, alors A = B.

4.3. Relation d'équivalence et classes d'équivalence

Définition 4.6 : On appelle relation d'équivalence, toute relation binaire réflexive, symétrique et transitive. \Box

Exemples:

- L'égalité = entre éléments d'un ensemble est une relation d'équivalence.
- Dans l'ensemble des habitants du quartier, la relation « être le voisin de » est une relation d'équivalence.
- Dans l'ensemble des droites du plan, la relation binaire « être parallèle » est une relation d'équivalence.
- Dans l'ensemble $I\!N$ des entiers naturels, la relation binaire « x et y ont le même reste dans la division euclidienne par 3 » est une relation d'équivalence.

Définitions 4.7 : Si a est un élément de l'ensemble E sur lequel est défini une relation d'équivalence \mathcal{R} , on appelle classe d'équivalence de a et on note [a] ou \dot{a} , le sous-ensemble de E formé des éléments qui sont en relation d'équivalence ave a :

$$[a] = \{ x \in E \mid x \mathcal{R} a \}.$$

Si $x \in [a]$, on dit aussi que x est congru à a modulo \mathcal{R} .

Exemples:

- Pour l'égalité =, la classe de a se réduit à : $[a] = \{a\}$.
- Dans l'ensemble des habitants du quartier, [Paul] est l'ensemble des voisins de Paul ; on peut dire, par exemple, que c'est l'ensemble des habitants de l'immeuble où habite Paul ; tout dépend de la façon dont on a défini la relation « être le voisin de ».

- Considérons dans l'ensemble des droites du plan, la relation binaire « être parallèle à ». Si D_0 est une droite donnée, la classe de D_0 est l'ensemble des droites du plan parallèles à D_0 . Ce sont toutes les droites qui ont la même direction que D_0 . Si le plan est muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$, si on considère la droite D_m d'équation y = mx, sa classe est formée des droites d'équation y = mx + a avec $a \in \mathbb{R}$. Il y a donc une infinité de droites dans la classe de D_m et il y a une infinité de classes puisque pour tout $m' \neq m$, les classes $[D_m]$ et $[D_{m'}]$ sont distinctes.
- Dans l'ensemble \mathbb{Z} des entiers relatifs, la relation binaire « x et y ont le même reste dans la division euclidienne par 3 » est une relation d'équivalence. Il n'y a que trois classes d'équivalence : la classe [0], formée des entiers multiples de 3, la classe [1], formée des nombres de la forme 3k+1, $k \in \mathbb{Z}$ et la classe [2], formée des nombres de la forme 3k+2, $k \in \mathbb{Z}$.
- Exercice: Dans IR, montrer que la relation « $\exists k \in \mathbb{Z} \mid x y = 2k\pi$ » est une relation d'équivalence. On l'appelle la congruence modulo 2π . On peut dire que la classe d'équivalence de $a \in IR$ est l'ensemble de toutes les mesures possibles en radians, d'un angle du plan qui vaut a radians.

Proposition 4.1. Propriétés des classes d'équivalence : Avec les notations précédentes,

- $1)[a] \neq \emptyset.$
- 2) Si $[a] \cap [b] \neq \emptyset$, alors [a] = [b], et l'ensemble des classes d'équivalence forme une partition de E.
- 3) Réciproquement, toute partition de E définit une relation d'équivalence sur E.

Preuve: 1) $[a] \neq \emptyset$ car $a \in [a]$ puisque \mathcal{R} est réflexive.

2) Soit $c \in [a] \cap [b]$. Si $x \in [a]$, alors $x\mathcal{R}a$. Mais comme $a\mathcal{R}c$, on a par transitivité, $x\mathcal{R}c$. Mais comme $c\mathcal{R}b$, on a aussi $x\mathcal{R}b$ donc $x \in [b]$. Ce qui signifie que $[a] \subset [b]$.

En échangeant les rôles de a et b, on montre de la même manière que $[b] \subseteq [a]$, donc que [a] = [b]. Ainsi, si deux éléments a et b ne sont pas en relation, les classes d'équivalence [a] et [b] sont disjointes. Tout élément de E appartient donc à une (la sienne) et une seule classe d'équivalence et l'ensemble des classes d'équivalence forme une partition de E.

3) Réciproquement, soit \mathcal{P} une partition de E, la relation : « x et y appartiennent au même élément $F \in \mathcal{P}$ » est une relation d'équivalence sur E dont les classes sont les éléments de \mathcal{P} .

Définition 4.8 : L'ensemble des classes d'équivalence modulo \mathcal{R} , forme un nouvel ensemble, appelé ensemble quotient de E par \mathcal{R} et est noté E/\mathcal{R} .

Remarque 4.1 : Les classes d'équivalence étant des parties de E, elles sont des éléments de $\mathcal{P}(E)$, E/\mathcal{R} est donc une partie de $\mathcal{P}(E)$, donc un élément de $\mathcal{P}(\mathcal{P}(E))$:

$$x \in \dot{x} \;,\; \dot{x} \subset E \;,\; \dot{x} \in \mathcal{P}(E) \;,\; \dot{x} \in E/\mathcal{R} \;,\; E/\mathcal{R} \subset \mathcal{P}(E) \;,\; E/\mathcal{R} \in \mathcal{P}(\mathcal{P}(E)) \;.$$

Exemple : Pour tout $n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$, on note $\mathbb{Z}/n\mathbb{Z}$, l'ensemble quotient de \mathbb{Z} par \mathbb{R} : $a\mathbb{R}b$ ssi « $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ ont même reste dans la division par n ». Cela s'écrit aussi :

$$a\mathcal{R}b \iff \exists k \in \mathbb{Z} \mid a - b = kn$$

et on dit que a est congru à b modulo n. Ainsi : $\mathbb{Z}/3\mathbb{Z} = \{[0], [1], [2]\}.$

4.4. Relation d'ordre

Définition 4.9 : On appelle relation d'ordre, toute relation binaire réflexive, antisymétrique et transitive. □

Exemples:

– Dans l'ensemble \mathbb{N}^* , la relation : « être divisible par » est une relation d'ordre.

En effet, tout nombre non nul est divisible par lui-même (réflexivité); si a est divisible par b, a = kb et si b est divisible par a, b = la, alors a = b car a = kb = kla implique en divisant par a, que kl = 1 donc k = l = 1 puisqu'on travaille avec des entiers positifs (antisymétrie). Enfin, si a est divisible par b, a = kb et si b est divisible par c, b = lc, on a donc a = (kl)c et a est divisible par c (transitivité).

– Dans l'ensemble des parties d'un univers \mathcal{U} , l'inclusion est une relation d'ordre.

En effet, pour tout ensembles A, B, C, on a $A \subseteq A$, si $A \subseteq B$ et $B \subseteq A$, alors A = B et si $A \subseteq B$, $B \subseteq C$, alors $A \subseteq C$.

Définitions 4.10 : On appelle ensemble ordonné, tout ensemble E, muni d'une relation d'ordre. E est totalement ordonné si on peut comparer tout couple (a,b) de $E \times E$ par la relation d'ordre \mathcal{R} . Sinon, on dit que E est partiellement ordonné. Enfin, on appelle relation d'ordre strict associée à la relation d'ordre \mathcal{R} , la relation binaire $(x\mathcal{R}y \wedge x \neq y)$. \square

Exemples:

La relation \leq est une relation d'ordre (large) totale sur l'ensemble des nombres réels \mathbb{R} et < est la relation d'ordre strict associée (une relation d'ordre strict est transitive mais ni réflexive, ni antisymétrique).

Dans l'ensemble des êtres humains, « être le descendant de » , « être l'ancêtre de » sont des relations d'ordre strict.

La relation « être divisible par » est une relation d'ordre partielle sur l'ensemble des entiers naturels $I\!\!N$.

Définition 4.11 : Une relation \mathcal{R} qui est réflexive et transitive mais non antisymétrique est appelée relation de préordre.

Exemple : En microéconomie, une relation indiquant la préférence (au sens large) définie sur un ensemble de biens est une relation de préordre car deux biens peuvent nous être indifférents sans être identiques.

4.5. Application entre deux ensembles

Définitions 4.12 : Soient deux ensembles A et B. On appelle application de A dans B, tout mode de correspondance qui à <u>tout</u> élément $a \in A$ fait correspondre un <u>unique</u> élément $b \in B$. On note

$$f : A \longrightarrow B, f : a \longmapsto b = f(a).$$

La donnée d'une application est celle du triplet (A, B, f) et deux applications (A, B, f), (C, D, g) ne sont dites égales que si

$$A = C$$
, $B = D$, et $\forall x \in A$, $f(x) = g(x)$.

b s'appelle l'image de a par l'application (ou la fonction) f; a est un antécédent de b.

A est l'ensemble de départ ou l'ensemble de définiton de f ou le domaine de f; B est l'ensemble d'arrivée et le sous-ensemble $\{b \in B \mid b = f(a)\}$ s'appelle l'ensemble image de A et se note f(A) ou $\mathcal{I}m(f)$.

Si $A' \subseteq A$ l'application $g: A' \longrightarrow B$ définie par $\forall a \in A', g(a) = f(a)$ s'appelle la restriction de f à A'. De la même manière, on dit que f est un prolongement de g à A. \square

Remarques 4.2:

- Tout élément de B n'est pas nécessairement l'image d'un élément de A.
- Le graphe de la fonction f est l'ensemble des couples (x, f(x)) quand x parcourt A. C'est une partie de $A \times f(A) \subseteq A \times B$. Une application f est donc un cas particulier de relation, celle définie par le graphe, c'est-à-dire $x\mathcal{R}y$ ssi $(x,y) \in A \times B$ et y = f(x). La différence est que, d'une part, tout $x \in A$ est en relation avec un $y \in B$ et, d'autre part, cet y est unique.
- Le mot fonction s'emploie dans le cadre plus large ou le domaine de définition, souvent noté $\mathcal{D}(f)$, peut être un sous-ensemble de A; le terme application est réservé au cas où $\mathcal{D}(f) = A$.

Exemples:

- La fonction de \mathbb{R} dans $\mathbb{R}: x \longmapsto \operatorname{Log}(x)$ n'est pas une application mais sa restriction : $x \longmapsto \operatorname{Log}(x)$ de $\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$ dans \mathbb{R} en est une.
- L'application qui à chaque français majeur associe son numéro INSEE (qui est aussi le numéro de Sécurité Sociale) est une application de l'ensemble des français majeurs dans $I\!\!N$.
- Dans l'ensemble des entiers naturels, l'application qui à n fait correspondre le reste de sa division par 3 est une application de \mathbb{N} dans lui-même dont l'image est $\{0,1,2\}$ (comparer avec les classes d'équivalence modulo 3 vues dans les exemples du \S 4).
- Pour tout A, la correspondance $a \longmapsto a$ est une application de A dans lui-même, appelée application identité de A et souvent notée I_A .
- Si tout élément $x \in A$ a la même image $b \in B$:

$$\forall x \in A$$
, $f(x) = b$,

l'application f est dite constante.

4.6. Surjection, injection, bijection

Définition 4.13 : Soient A et B, deux ensembles et f une application de A dans B, f est dite *surjective*, si f(A) = B. Autrement dit tout élément de B admet au moins un antécédent par f :

$$\forall b \in B, \exists a \in A \mid b = f(a).$$

Exemples:

- L'application $x \mapsto \text{Log}(x)$ de $\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$ dans \mathbb{R} est une surjection (tracez son graphe).
- L'application qui à chaque français majeur associe son numéro INSEE n'est pas surjective simplement car l'ensemble des français majeurs est un ensemble fini alors que $I\!N$ est infini.

- Dans l'ensemble des entiers naturels, l'application qui à n fait correspondre le reste de sa division par 3 n'est bien sûr pas surjective sur $I\!N$ mais, l'application (différente) de $I\!N$ dans l'ensemble $\{0,1,2\}$ avec la même correspondance est, elle, surjective. D'une manière générale, pour toute application f de A dans B, $x \longmapsto f(x)$, l'application associée $\widetilde{f}: x \longmapsto f(x)$ de $A \longrightarrow f(A)$ est surjective.
- L'application identité est surjective mais une application constante ne l'est pas.
- L'application $f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = 2n$ n'est pas surjective.
- L'application $f: \mathbb{R} \longrightarrow \mathbb{R}_+, f(x) = x^2$ est surjective puisque tout y > 0 a deux (donc au moins un) antécédents : $\pm \sqrt{y}$.

Définitions 4.14 : Soient A et B, deux ensembles et f une application de A dans B, f est dite *injective*, si deux éléments distincts de A ont des images distinctes par f:

$$\forall (a, a') \in A^2, \ a \neq a' \Longrightarrow f(a) \neq f(a').$$

Autrement dit, par contraposition (et parce qu'il est plus facile de travailler avec des égalités),

$$\forall (a, a') \in A^2, \ f(a) = f(a') \Longrightarrow a = a'.$$

Une application à la fois injective et surjective est dite bijective. On dit que c'est une bijection ou une correspondance biunivoque : tout élément de l'ensemble d'arrivée est l'image d'un et un seul élément de l'ensemble de départ. \Box

Exemples:

- L'application $x \mapsto \text{Log}(x)$ de $\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$ dans \mathbb{R} est injective et donc bijective (voir le graphe).
- L'application qui à chaque français majeur associe son numéro INSEE est injective : deux personnes différentes n'ont pas le même numéro. Elle n'est pas bijective puisque non surjective.
- Dans l'ensemble des entiers naturels, l'application qui à n fait correspondre le reste de sa division par 3 n'est bien sûr pas injective et encore moins bijective.
- L'application identité est bijective mais une application constante n'est pas injective.
- L'application $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(n) = 2n est injective car si 2n = 2m, on a évidemment n = m. On peut dire qu'elle est bijective de \mathbb{N} dans l'ensemble des entiers naturels pairs.
- L'application $f: \mathbb{R} \longrightarrow \mathbb{R}_+$, $f(x) = x^2$ n'est pas injective puisque tout y > 0 a deux antécédents : $\pm \sqrt{y}$ mais la restriction de f à \mathbb{R}_+ est bijective puisque tout $y \geq 0$ a une racine carrée positive et une seule : \sqrt{y} .

Définition 4.15: Soient A et B, deux ensembles et f une application bijective de A dans B. On peut faire correspondre à tout élément de B, son unique antécédent par f dans A. On définit ainsi l'application réciproque (ou inverse) de f, notée f^{-1} de B dans A: $b \in B \longmapsto f^{-1}(b) \in A$ caractérisée par

$$\forall a \in A, \ \forall b \in B, \ \left(a = f^{-1}(b) \Longleftrightarrow b = f(a)\right).$$

Exemple : L'application $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, $y = f(x) = x^2$ est bijective et son application inverse est la racine carrée positive : $f^{-1}: x \in \mathbb{R}_+ \longrightarrow y = \sqrt{x} \in \mathbb{R}_+$. (Faire son graphe)

Proposition 4.2 : Avec les notations et hypothéses de la définition 4.15, l'application f^{-1} est elle-même bijective.

Preuve: (Exercice)

Tout élément a de A admet par f une image b = f(a), ce qui veut dire que b est antécédent de a par f^{-1} . L'application f^{-1} est donc surjective.

Si $f^{-1}(b) = f^{-1}(b')$, b et b' ayant chacun un unique antécédent a et a' par f, on obtient a = a' puisque $f^{-1}(b) = a$ et $f^{-1}(b') = a'$ et ainsi, b = f(a) = f(a') = b'. L'application f^{-1} est donc injective.

4.7. Composition des applications

Définition 4.16 : Soient A, B, C trois ensembles, f une application de A dans B et g une application de B dans C. On peut construire la séquence suivante :

$$a \in A \longmapsto b = f(a) \in B \longmapsto c = g(b) \in C$$
.

On obtient ainsi une application de A dans C appelée application composée de f et g et notée $g \circ f$ (attention à l'ordre) :

$$a \in A \longmapsto c = g \circ f(a) = g[f(a)] \in C$$
.

Exemples:

– Considérons l'application $f: \mathbb{R} \longrightarrow \mathbb{R}_+$, $f(x) = x^2$ et la fonction $g: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto \operatorname{Log}(x)$. Pour fabriquer l'application composée $g \circ f$, il faut que l'ensemble d'arrivée de f soit égal à l'ensemble de départ de g et tel que g soit une application (tout élément de l'ensemble de départ a une image).

Donc cet ensemble doit être $\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$. Il faut donc considérer :

$$f: \mathbb{R}^* = \{x \in \mathbb{R} \mid x \neq 0\} \longrightarrow \mathbb{R}^*_+, f(x) = x^2 \text{ et } g: \mathbb{R}^*_+ \longrightarrow \mathbb{R}, x \longmapsto \text{Log}(x).$$

On a alors: $g \circ f : \mathbb{R}^* \longrightarrow \mathbb{R}, x \longmapsto \operatorname{Log}(x^2) = 2\operatorname{Log}|x|.$

- Exercice : fabriquez $f \circ g$ avec le même exemple.

(Réponse :
$$f \circ g : \mathbb{R}_+^* \longrightarrow \mathbb{R}_+, x \longmapsto (\text{Log}(x))^2$$
.)

Nous avons donc démontré avec un contre-exemple la

Proposition 4.3: La composition des applications n'est pas commutative.

D'où l'importance de l'ordre $g\circ f$ qui désigne la composition de f (en premier) avec g (en deuxième).

Exemple : Si $f: A \longrightarrow B$ est bijective, $f^{-1} \circ f = I_A$ et $f \circ f^{-1} = I_B$. Réciproquement :

Proposition 4.4 : Si f est une application de $A \longrightarrow B$ et s'il existe une application g de $B \longrightarrow A$ telle que :

$$g \circ f = I_A$$
 et $f \circ g = I_B$,

alors f est bijective et $g = f^{-1}$.

Preuve : Soit b un élément quelconque de B, montrons d'abord l'existence d'un antécédent de b par f:

Soit $a = q(b) \in A$. Alors,

$$f(a) = f[g(b)] = f \circ g(b) = I_B(b) = b$$
.

Tout élément $b \in B$ admet donc au moins un antécédent a = g(b) par f dans A. f est donc surjective.

Montrons ensuite l'unicité de cet antécédent :

Soit $a' \in A$ un antécédent de b par f (on a vu qu'il en existe au moins un) :

$$g(b) = g[f(a')] = g \circ f(a') = I_A(a') = a'.$$

a' est donc nécessairement égal à q(b) qui est l'unique antécédent de b. f est donc bijective et $q = f^{-1}$.

Proposition 4.5: Soient A, B, C, D quatre ensembles et $f: A \longrightarrow B, g: B \longrightarrow C, h:$ $C \longrightarrow D$ trois applications. On a alors:

$$h \circ (g \circ f) = (h \circ g) \circ f. \qquad \Box$$

Preuve: Exercice

Proposition 4.6: Soient E un ensemble et $\mathcal{B}il(E)$, l'ensemble des bijections de E dans lui-même. L'application $I_E: x \longmapsto x$, vérifie :

$$\forall f \in \mathcal{B}il(E), \ f \circ I_E = I_E \circ f = f.$$

Preuve: Exercice

4.8. Un exemple : la fonction caractéristique d'un ensemble

Définition 4.17 : Soit E un ensemble et $A \subseteq E$. On appelle fonction caractéristique de

l'ensemble
$$A$$
, l'application $f_A: E \longrightarrow \{0,1\}$ définie par
$$f_A(x) = \begin{cases} 1 & \text{si} & x \in A, \\ 0 & \text{si} & x \not\in A. \end{cases}$$

Cette fonction porte bien son nom puisqu'elle caractérise le sous-ensemble A de E, c'est la première des propriétés qui suivent.

Propriétés : Si A et B sont deux sous-ensembles de E,

- 1) $A = B \iff f_A = f_B$,
- 2) $f_{A \cap B} = f_A f_B$,
- 3) $f_{A \cup B} = f_A + f_B f_A f_B$,

$$4) f_{\overline{A}} = 1 - f_A.$$

Preuve: Exercice

Exercices: 1) A l'aide des fonctions caractéristiques et de ces propriétés, on peut re démontrer toutes les propriétés vues sur l'union et l'intersection (cf. § 1.4.) :

- les relations de Morgan : $\overline{A \cap B} = \overline{A} \cup \overline{B}, \ \overline{A \cup B} = \overline{A} \cap \overline{B}$,
- l'associativité de l'union et de l'intersection.
- 2) Montrer que : $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- 3) Quelle est la fonction caractéristique de la différence symétrique $A \triangle B$?

(Réponse : $f_{A\triangle B} = f_A + f_B - 2f_A f_B$).